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Figure 1: Ambient occlusion contribution with no additional shading on the David head model. (a) Our technique at 75 fps, (b) 30 fps with
different parameters, (c) ray tracing with Mental Ray. The images are rendered at 800x600.

Abstract

Ambient occlusion is a technique that computes the amount of light
reaching a point on a diffuse surface based on its directly visible
occluders. It gives perceptual clues of depth, curvature, and spa-
tial proximity and thus is important for realistic rendering. Tradi-
tionally, ambient occlusion is calculated by integrating the visibil-
ity function over the normal-oriented hemisphere around any given
surface point. In this paper we show this hemisphere can be parti-
tioned into two regions by a horizon line defined by the surface in
a local neighborhood of such point. We introduce an image-space
algorithm for finding an approximation of this horizon and, further-
more, we provide an analytical closed form solution for the occlu-
sion below the horizon, while the rest of the occlusion is computed
by sampling based on a distribution to improve the convergence.
The proposed ambient occlusion algorithm operates on the depth
buffer of the scene being rendered and the associated per-pixel nor-
mal buffer. It can be implemented on graphics hardware in a pixel
shader, independently of the scene geometry. We introduce heuris-
tics to reduce artifacts due to the incompleteness of the input data
and we include parameters to make the algorithm easy to customize
for quality or performance purposes. We show that our technique
can render high-quality ambient occlusion at interactive frame rates
on current GPUs.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—;

Keywords: ambient occlusion, image space, ray tracing, graphics
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1 Introduction

Ambient occlusion can be expressed in terms of the rendering equa-
tion [Kajiya 1986] in the particular case where the incoming light
intensity is uniform, the surface does not emit light and has a Lam-
bertian BRDF. The light intensity from ambient occlusion at a sur-
face point P with surface normal~n is then:

A =
1
π

∫
Ω

(1−V (~ω))(~n ·~ω)dω (1)

V is the light visibility function over the normal-oriented unit hemi-
sphere Ω, which returns 1 if a ray starting from P in direction ~ω

intersects an occluder and 0 otherwise. Unlike with global illumi-
nation, the ambient occlusion integral is not recursive, which makes
it more affordable to compute.

A simple Monte-Carlo solution to Equation (1) is to compute this
2D integral by tracing rays in directions ~ω through the hemisphere
with a probability density function PDF =~n · ~ω . Building on the
concept of horizon occlusion [Rogers 1985], our approach splits
the hemisphere into two parts by a horizon line of height H(θ).
Rays that would normally be traced below the horizon are known
to intersect an occluder so the intersection test for these rays can be
skipped. More importantly, since we have the horizon line, we can
compute the occlusion under the horizon much more efficiently, by
sampling in 1D instead of 2D.

(a) (b)

Figure 2: (a) Red rays intersect the surface S in a local neighbor-
hood of P. (b) We compute the height of the horizon by deflecting
the horizon rays step by step towards the eye.

We call horizon rays, the rays starting at the surface point P and
tangent to the horizon. The horizon height H(θ) is the height at the
tip of the ray in the normal direction, normalized between 0 and 1.
To find the horizon rays, we propose a search along a curve which
walks on the heightfield in direction θ . Figure 2 shows an overview
of the algorithm in 2D. Horizon rays initially in the tangent plane
of surface at P are deflected step by step towards the eye. The algo-
rithm stops iterating when the length of the ray reaches a maximum
range R.

We apply our method to the depth buffer of the rendered scene,
which provides a descretized approximation of the visible geom-
etry on the screen. As [Shanmugam and Arikan 2007] and [Mit-
tring 2007] have shown, although this depth buffer information may
be missing potential occluders, visually pleasant ambient occlusion
can be computed from it.

This work was presented as a poster at the I3D’08 conference.



Equation 1 can be rewritten as:

A =
1
π

∫ 2π

θ=0

∫ 1

z=H(θ)
(1−V (~ω))(~n ·~ω)dω (2)

The ambient occlusion illumination A can be expressed in terms of
the occlusion as:

A = 1− 1
π

(∫ 2π

θ=0
T (θ)dθ +

∫ 2π

θ=0

∫ 1

z=H(θ)
V~ω (~n ·~ω)dω

)
(3)

where T (θ) is the horizon occlusion in direction θ . In fact, we
derive that T (θ) = H(θ)2, and thus for a given θ , the horizon oc-
clusion term does not require any sampling of the hemisphere. This
enables focusing the randomized sampling to a subset of the hemi-
sphere, while still capturing the occlusion contribution of the non-
sampled part. Figure 1 (a) shows an example where the horizon
occlusion term only is a good approximation of the overall occlu-
sion.

Our algorithm computes the terms in Equation 3 by computing the
horizon height H(θ) and the visibility function V (~ω) using a per-
pixel normal and performing a linear search in the depth buffer. Our
contributions include:

• We use the concept of horizon occlusion for optimizing the
sampled area of the hemisphere Ω.

• We introduce a new algorithm for finding the horizon height
H(θ) in a given direction, based on a depth buffer.

• We provide an analytical solution to compute the occlusion
contribution of the horizon occlusion T (θ), which provides a
lower bound to the ambient occlusion term.

• Our method works in image space and does not require any
precomputation based on the scene geometry.

2 Related Work

Ambient Occlusion. The concept of ambient occlusion was
pioneered by accessibility maps [Miller 1994] and obscurances
[Zhukov et al. 1998a]. Obscurances replace the visibility function
V by an attenuation term. Ambient occlusion as defined in Equa-
tion 1 appeared in [Langer and Bulthoff 1999]. It has now become
a standard rendering technique as an alternative to global illumi-
nation [Landis 2002; Christensen 2003; Christensen et al. 2006].
In offline renderers, the visibility term V is typically computed by
sampling the hemisphere using object-space ray tracer.

This ambient occlusion term from Equation 1 is an indirect lighting
term, which needs to be weighted and added with direct lighting
to produce a final color. It can be seen as an improvement to the
flat ambient term from the OpenGL lighting equation. On the other
hand, other techniques such as [Hegeman et al. 2006] and [Pharr
and Green 2004] compute the following ambient shadow term:

A′ =
1

2π

∫
Ω

(1−V (~ω))dω (4)

This term is the shadow from an environment light. Like for regular
shadowing, it needs to be multiplied with the direct lighting term.
In this paper, we compute A as defined in Equation 1.

Ambient occlusion terms can be computed using image-based al-
gorithms. For instance, [Pharr and Green 2004] implement ambient
occlusion on graphics hardware by averaging hard shadows from
light sources distributed around the scene, using shadow mapping.
This approach typically requires hundreds of point light sources to

converge to a smooth solution. Obscurances [Zhukov et al. 1998a]
with color bleeding can be computed based on casting bundles of
rays in random directions, which can be implemented on graphics
hardware using depth peeling from multiple viewpoints [Méndez
et al. 2003]. Hardware-accelerated occlusion queries can also be
used to compute ambient occlusion per face or per vertex. [Sattler
et al. 2004; Franklin 2005].

In real-time graphics, for static scenes, ambient occlusion terms can
be precomputed at the vertices or in light maps. Bent normals can
be computed by averaging the direction of the unoccluded rays in
the hemisphere [Landis 2002]. Ambient occlusion fields [Kontka-
nen and Laine 2005] render inter-object ambient occlusion, without
self-occlusion. [Malmer et al. 2006] take a volumetric approach
and store ambient occlusion values in a 3D grid and using linear in-
terpolation. [Cadet and Lécussan 2007] store the ambient occlusion
based on an octree. [Bunnell 2005], [Wassenius 2005] and [Hobe-
rock and Jia 2007] approximate the geometry using form factors
between disks to render ambient occlusion in real time. This disk-
based approach may not be practical for complex scenes with ar-
bitrary dynamic geometry. All of the techniques mentioned above
require scene-dependent precomputation. [Hegeman et al. 2006]
take a different approach and construct ad-hoc analytical formula
for plausible ambient occlusion of trees.

Recently, [Mittring 2007] and [Shanmugam and Arikan 2007] have
shown a new way of rendering ambient occlusion in screen space
as a postprocessing pass based on a depth buffer from the eye’s
point of view. This is similar to soft shadow mapping based on
backprojection, where the depth buffer is rendered from a light’s
point of view [Guennebaud et al. 2006; Schwarz and Stamminger
2007]. Crytek Gmb has presented the idea of using the informa-
tion in a depth buffer [Mittring 2007] to compute ambient occlu-
sion solely based on a depth buffer with no normal information.
The technique recovers eye-space positions from the depth values
in the depth buffer and samples a sphere around the point. Then it
compares the depth of the samples with the depth of the point and
computes an approximate ambient occlusion term based on these
comparisons. [Shanmugam and Arikan 2007] accumulate solid an-
gles occluded by neighboring pixels in screen space based on the
pixel eye-space positions and normals stored in an ND-buffer. The
efficiency of their image-space method relies on the fact that neigh-
bor pixels in screen space are likely to come from objects that are
close to each other in world space. To capture the occlusion from
distant occluders, the occlusion from precomputed spheres is added
to the image-space occlusion. To reduce under-occlusion artifacts,
they use two ND-buffers: one for the front faces and one for the
back faces. In this paper, we use a single ND-buffer. Their image-
based method has over-occlusion issues because all the samples are
assumed to be visible from the surface point.

Ray Marching in Depth Buffers. Although our algorithm in-
ternally works in eye space, it is similar to the tangent-space lin-
ear search, also known as line rasterization [Baboud and Décoret
2006; Amanatides and Woo 1987]. This linear search has been used
in parallax occlusion mapping techniques [Brawley and Tatarchuk
2004; Oliveira and Policarpo 2005; Policarpo et al. 2005; Tatarchuk
2006] and we refer to it as ray marching. The idea of searching
along a ray in a depth buffer has also been used image-space re-
fraction [Davis and Wyman 2007; Oliveira and Brauwers 2007].
As mentioned in [Davis and Wyman 2007], tracing a ray in screen
space can be implemented as an image-space operation by march-
ing along the projected ray in image space. Our method can be seen
as an optimization of ray marching based on an horizon line defined
on the hemisphere.
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Figure 3: Horizon Tracing. Two steps of the deflection process of
an horizon ray hi.

Horizon Culling. The idea of culling occluders below a horizon
line has been used for occlusion culling on hierarchical terrains
[Downs et al. 2001; Lloyd and Egbert 2002; Stewart 1997]. In this
context, the horizon is the boundary between the sky and the terrain
as seen from the point of view of the eye. Regions of the terrain
that are completely below the horizon can be culled. As described
by [Downs et al. 2001], floating horizons have also been used for
plotting functions of the form z = f (x,y) by processing the function
from back to front and maintaining an upper and lower horizon for
the function graph [Rogers 1985].

3 Our Algorithm

Our algorithm takes as input an ND-buffer storing linear depths and
normals for the pixels on the screen. For each pixel, we compute
an eye-space position of its corresponding surface point P and we
integrate the ambient occlusion terms from Equation 3. We pick a
set of random directions θ distributed around the normal~n at point
P. For each angle θ , the height of the horizon H(θ) is computed by
marching in the depth buffer along a line projected onto the tangent
plane in direction θ . Then, the horizon occlusion T (θ) is com-
puted and additional normal rays are optionally traced in the part of
the hemisphere above H(θ) to complete the sampling of the hemi-
sphere. The algorithm is applied to every surface point P visible on
the screen.

3.1 Horizon Tracing

For a given angle θ , the problem is to find the height H(θ) of the
horizon seen from P within a certain radius of influence R around
P. We start with a ray h = (P,~t) where~t is a surface tangent at P
in the direction θ , and we incrementally extend the length of this
ray Ns times. At each step, the end point Q of the ray h is projected
in screen space and its depth is compared with the depth of the
corresponding point in the depth buffer. If the later is closer (Q is
below the surface seen from the eye), and additional conditions are
satisfied, then h is deflected towards the intersection point I and its
direction is normalized and rescaled (see Figure 3). More precisely,
the deflection process works as described in Figure 4. The horizon
rays h are deflected only if Q is within the distance R from P and
if the candidate horizon ray has a proper direction (ie. not inverted
tangential component). This procedure is applied Nd times per pixel
for randomly distributed angles θ distributed around the normal and
the resulting heights define a piece-wise linear approximations of
the horizon line H(θ) on the hemisphere Ω.

3.2 Horizon Occlusion

The horizon occlusion term from Equation 3 is:

OT =
1
π

∫ 2π

θ=0
T (θ)dθ

H(θ) :=

1 h← T

2 for i← 1 . .Ns

3 do Q← P+ i R
Ns h

4 if ISBELOW(Q,S)
5 then I← INTERSECT(Q−E,S)
6 if LENGTH(I−P) < R and DOT(I−P, T) > 0
7 then h← NORMALIZE(PROJ~n,~t (I−P))
8 return DOT(h,~n)

Figure 4: Pseudo code for computing H(θ) by deflecting a horizon
ray. In each iteration, point Q is projected onto the screen and the
surface S represented by the depth buffer is sampled. This sample is
used to evalute the functions ISBELOW and INTERSECT. The func-
tion PROJ~n,~t projects a vector on the plane defined by the normal~n
and the tangent~t at P.

=
1
π

∫ 2π

θ=0

∫ H(θ)

z=0
(~n ·~ω)dω (5)

To perform the integration, we use cylindrical coordinates (r,θ ,z),
where d~w = dzdω r̂ with r = 1. We partition Ω below H with ad-
jacent vertical hemispherical lunes of height H(θi) subtending an
angle α = θi+1−θi = 2π/Nd around the normal. We then approx-
imate the occlusion OT by:

OT =
1
π

Nd

∑
i=1

∫ H(θi)

0

∫
θi+1

θi

(~n ·~ω)dθdz

=
α

π

Nd

∑
i=1

∫ H(θi)

0
(~n ·~ω)dz

=
2

Nd

Nd

∑
i=1

∫ H(θi)

0
zdz

=
1

Nd

Nd

∑
i=1

H2(θi)dz (6)

Horizon occlusion typically produces good results for continuous
surfaces with a single layer of depth complexity. In the next sec-
tion, we describe a complementary algorithm to account for more
complex occlusions such as inter-object occlusion.

3.3 Normal Occlusion

Figure 5: For each horizon ray hi, i = 1..Nd , we trace Nn normal
rays (2 are shown in the figure), starting from P.

We partition Ω above H with adjacent vertical stripes of quadrilat-
eral patches delimited by the heights zk (Figure 5).

The normal occlusion for a given direction~ti is:

ON,i(zk) =
1
π

∫
θi+1

θ=θi

∫ zk+1

zk

V (~ω)(~n ·~ω)dω



=
α

π

∫ zk+1

zk

V (~ω)(~n ·~ω)dω

=
2

Nd

∫ zk+1

zk

V (~ω)zdω

=
1

Nd
(z2

k+1− z2
k)V (~ω) (7)

Equation 7 is a valid approximation for any type of patch distribu-
tion. By picking a specific distribution, Equation 7 can be simplified
so that each patch contributes the same amount of occlusion, which
is more efficient. From a Monte-Carlo point of view, such a distri-
bution is doing importance sampling using a cosine distribution in
the upper part of the hemisphere. [Pharr and Humphreys 2004]. In
this case,

z2
k+1− z2

k = c (8)

The occlusion contribution of all patches should add up to 1−OT ,

Nn

∑
k=1

ON,i(zk) =
1−OT

Nd

Nn

Nd
c =

1−OT

Nd

c =
1−OT

Nn
(9)

To compute the initial ray direction~rk towards patch Πk, we need
the polar angle φk, which relates to zk as:

zk = cos(φk)

Pluggin in Equation 8,

cos2(φk+1)− cos2(φk) =
1−OT

Nn

Since the terms on the left have a linear dependency,

cos2(φk) =
1−OT

Nn
k

φk = arccos
(√1−OT

Nn
k
)
, k = 0 . . .Nn−1 (10)

And finally, the direction of rk is:

~rk = cos(φk)~n+ sin(φk)~ti

where ti is the projection of the horizon ray hi on the TB plane.
After simplifying, our cosine distribution is:

~rk =
√

1− k(1−OT )/Nn~ti +
√

k(1−OT )/Nn ~n

Note that~rk is always above the horizon hi. With this distribution,
each patch contributes:

ON,i(~rk) =
V (~ω)
NnNd

So the total normal occlusion is:

ON =
Nd

∑
i=1

Nn

∑
k=1

V (~ω)
NnNd

(11)

For each patch Πk, we determine V (~ω) in the direction rk by doing
a linear search in the depth buffer in direction ~ω with a fixed num-
ber of steps. After determining V (~ω), we accumulate its occlusion
contribution to the total occlusion O.

R = 0.1 R = 0.2 R = 0.5

Figure 6: Effect of the radius of influence R on a scene.

Nd = 1 Nd = 4 Nd = 10

Figure 7: Effect of the number of initial directions Nd on a scene.

3.4 Combining Horizon and Normal Occlusion

The final light intensity from ambient occlusion at P is:

A = 1− (OT +ON) (12)

3.5 Linear Attenuation

At a distance R around objects, sharp occlusion boundaries may be
visible because these occluders may strongly influence the ambi-
ent occlusion once they begin to be sampled. To soften these sharp
edges, we weight the contribution of each ray by a linear attenua-
tion function based on the normalized distance between P and the
occluder.

3.6 Parameter Analysis

In this section, we give a description of the different parameters that
control the performance and overall quality of the ambient occlu-
sion estimation.

Radius of influence R defines the maximum distance of influence
of any given occluder (Table 6). Increasing this radius has
two side effects: occluder undersampling in the hemisphere
(requiring more sampling rays to maintain image quality) and
stronger ambient occlusion values due to the existence of
more occluders (e.g. we can maximize the occlusion for the
walls inside a closed room if the radius is large enough to in-
clude the opposing walls).

Number of tangent directions Nd is the number of rays around
the normal used to estimate the horizon split line H(θ). The
total number of traced rays is proportional to this parameter.

Number of normal rays Nn is the number of rays that will be used
during ray marching. These rays are distributed on the subset
of the hemisphere above the horizon line H(θ) determined
during the tangent tracing pass.

Number of steps Ns is the number of steps that both the horizon
tracing and the ray marching passes will evaluate on a per ray
basis. This parameter affects perfomance directly and also
the quality of the results for scenes with high geometric detail
such as the Buddha dataset.



4 Implementation Details

We implemented our algorithm in screen-space as a fullscreen pass
using a pixel shader that takes as input a linear depth buffer and a
normal buffer. The depths are the z components of the eye-space
positions and the normals are in eye space. This approach has the
advantages of requiring no scene preprocessing.

4.1 Limitations in screen space

When working in screen space, we face certain limitations that di-
rectly affect the quality of the results. In particular, undersampling,
data quantization and missing values can introduce artifacts that
need to be addressed. We present in this section the problems we
have encountered and how they can be solved.

4.1.1 Near-parallel view quantization

Figure 8: Root of the banding artifacts for smooth surfaces in
oblique angles.

During the texture fetches of the depth values, it is possible to ob-
tain erroneous values due to linear interpolation of depth disconti-
nuities. In the general case we choose to use nearest pixel filtering
to avoid this problem.

However point filtering can introduce banding artifacts. In particu-
lar, as shown in Figure 8, when evaluating a smooth surface quasi-
perpendicular to the image plane (e.g. a ground plane on the scene),
we can observe that many rays will erroneously intersect the surface
(rays in red in the figure), introducing a view dependent variability
of the ambient occlusion values.

To avoid these artifacts, we offset the initial pixel position P in the
normal direction. If we consider the worst case when the view di-
rection is parallel to the plane, the height of the staircase step in
screen space is u = 1/res, with res being the screen resolution in
pixels (Figure 9). Assuming the camera is at the origin and has a
field of view φ .

Figure 9: Pinhole camera geometry.

Considering the focal length as

f =
1

tan( φ

2 )

By similar triangles, the size of the stair step s in eye space is:

s =
uz
f

=
z

f res

Thus, we need to offset P to

P′ = P+
z

f res
~n (13)

We choose f and res from the image space axis where f res is
smaller.

4.1.2 Randomization

To hide banding artifacts from regular sampling, we use random-
ized rotations for the ray directions, and jittered step sizes for the
linear searches. These randomized values are precalculated and
stored in a tiled texture containing:

(cos(α),sin(α),β )

where α = 0..2π/Nd , and β ∈ (−1;1). From the first two compo-
nents, we reconstruct a rotation matrix to apply to all initial horizon
rays. The third component β is used to jitter the step size s = R/Ns
as follows:

P+~h = P+(i+β ) · s ·
~h

||~h||

4.1.3 Depth Variance Based Blur

Depending on the amount of sampling directions and the use of ran-
domization, the result of the ambient occlusion evaluation presents
a certain degree of noise. This can be reduced by adding a postpro-
cessing pass performing a Gaussian blur.

We choose to apply a 5x5 Gaussian blur, additionally weighting
each sample by the inverse of its depth deviation from the kernel
center, in order to preserve sharp object edges.

5 Experiments

In this section we present rendering results and analyse how the pa-
rameters of our method affect quality and performance. We also
discuss the limitations of our method. We use four datasets: Bud-
dha, Ring, Dragon, and David with about 800,000 triangles each.
We rendered them using a Direct3D 10 renderer on a 2.4 GHz AMD
Athlon64 X2 with an NVIDIA GeForce 8800 GTX graphics card
and 2GB of RAM. The normal rendering pipeline consists of 3 main
passes including the geometry pass that generates the depth and nor-
mal buffers, the ambient occlusion pass, and a depth-dependent blur
on the ambient occlusion result.

For the David model in Figure 1(b), Table 1 breaks down the time of
the individual passes. The horizon occlusion takes almost the same
time as the normal occlusion with one ray. In this case, both terms
have the same complexity in terms of number of samples (NdNs).
The difference is due to the normal rays reusing the directions from
the horizon rays. The cost the normal occlusion is proportional to
the number of rays Nn.

Resolution Geometry[ms] HO[ms] NO[ms] Blur[ms]
640x480 4.02 7.16 4.67 0.71
800x600 4.40 10.55 7.24 1.33
1024x768 4.96 17.09 12.53 2.09

1280x1024 5.92 30.71 26.54 3.23
1600X1153 6.68 39.66 37.41 4.35

Table 1: Break down of the performance for Figure 1(b). HO and
NO stand for horizon and normal occlusion respectively. R = 0.2,
Nd = 7, Nr = 1, Ns = 12. Num triangles: 750,000.



Figure 13: Discontinuity / outlier problem. It is unclear whether B
is connected to S.

In Figure 11, we present different render qualities based on a fixed
radius R and different sets of parameters. In (a) and (d), the algo-
rithm is configured for performance and quality respectively and in
(b) and (c), we show the difference from adding normal occlusion,
which improves proximity occlusion.

As shown on Figures 11 and 14, our algorithm produces similar
images to object-based ray tracing. For some scenes, the contribu-
tion of the horizon occlusion term in Equation 3 can dominate the
final occlusion value. In this case, the ambient occlusion can be
approximated by skipping the contribution of the normal rays. For
example, Figures 10 (a) and (b) show the separate contributions of
the horizon occlusion and the normal occlusion respectively. Ex-
cluding the contact clues, the horizon occlusion captures the relief
which is dominant in this case. In general, normal occlusion is
needed when there are occluders located in the normal direction
relative to the surface point P.

Compared to Monte-Carlo ray marching, our implementation is
more efficient because tracing one horizon ray has approximately
the same cost as tracing one regular ray while carying the infor-
mation from all the normal rays below it (Figure 2). The horizon
occlusion converges faster because it is a close-form solution of the
occlusion integral below the horizon, whereas ray marching per-
forms a discrete approximation. In addition, horizon tracing walks
on the surface while ray marching shoots rays blindly. Thus, as
seen in Figure 12, ray marching requires more rays than horizon
occlusion to produce similar images.

The method presented in this paper uses solely screen information
to calculate ambient occlusion for all pixels on the screen. This in-
troduces some inherent limitations due to the lack of information in
the input data, which may cause underocclusion or overocclusion.
For example, it is a common case that scenes present depth disconti-
nuities when there are objects occluding others from the eye’s point
of view (Figure 13). The horizon estimation could overestimate the
occlusion at the points where there is a depth discontinuity within
the radius of influence. On the other hand, we could modify the al-
gorithm to underestimate the horizon occlusion and deflect~hi only
if the detected occluder is within a growing sphere centered at P.
A more general solution to this problem could be to capture more
that one depth layer using a depth peeling approach. For instance,
having two depth layers, one with front faces and another with back
faces would capture the closest occluders to the eye and improve the
accuracy of the algorithm [Shanmugam and Arikan 2007]. How-
ever this would require the application to render the geometry a
second time to fill the second layer.

Another limitation of our proposed method (and any screen-space
method) is that we cannot reconstruct information that is not vis-
ible. For example when rotating a 3D model, sometimes popping
artifacts can be seen. These occur when a geometric feature be-
comes visible or disappears from the view. This will be reflected
as a sudden change on ambient occlusion on the geometry nearby.
This problem can be addressed by using many layers of depth peel-

ing or using multiple views at the additional cost of more geometry
rendering passes.

6 Conclusions

In this paper, we have introduced a screen-space ambient occlu-
sion algorithm that uses a combination of analytical solution and
ray marching to calculate the ambient occlusion at interactive rates.
Moreover the proposed method only requires per pixel depth and
normal information as input data. We introduce the concept of
hemisphere horizon split, that divides the hemisphere for ambient
occlusion estimation into two parts. We describe an efficient search
to find this split and an analytical formula to trivially evaluate oc-
clusion contributions on the section of the hemisphere below it. Our
method shows faster convergence compared to classic ray marching
and shows less quantization of shades of gray for low number of
traced rays. Since the proposed method operates as a post-process
for a given scene it has a fixed cost independent of the geometry.
The observed performance makes it suitable for integration in in-
teractive and real-time rendering software using current and future
graphics hardware. We have presented experiments showing the
influence of the different parameters of the algorithm on both the
quality and the performance of the generated images. We have also
compared the images to the ones from a commercial ray tracer ob-
serving that similar levels of quality can be obtained at a fraction of
the computational cost. Finally we have discussed the limitations of
the proposed solution and our goal is to address these in the future
following some of the proposed approaches.
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DOWNS, L., MÖLLER, T., AND SÉQUIN, C. H. 2001. Occlusion horizons for driv-
ing through urban scenery. In I3D ’01: Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM Press, New York, NY, USA, 121–124.

FRANKLIN, D. 2005. Hardware-based ambient occlusion. In ShaderX 4, 91–100.

2006. Gelato 2.1 technical reference. Tech. rep., NVIDIA.



(a) (b) (c)

Figure 10: (a) Horizon occlusion contribution (b) Normal occlusion contribution (c) Final occlusion.

(a) 58 fps (b) 29 fps (c) 18 fps (d) 5 fps (e) 8 min (ray tracer)

Figure 11: Rendering results for the Buddha dataset with various sets of parameters in 512x1024. All images have the same radius of
influence R = 0.3 and use linear attenuation. (a) Nd = 6, Ns = 9, Nn = 0. (b) Nd = 8, Ns = 18, Nn = 0. (c) Nd = 8, Ns = 18, Nn = 1. (d)
Nd = 18, Ns = 25, Nn = 2. (e) Rendered with Mental Ray with 256 rays per pixel and adaptive 1-16x supersampling.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2006. Real-time soft shadow
mapping by backprojection. In Eurographics Symposium on Rendering, 227–234.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2007. High-quality adaptive soft
shadow mapping. In Eurographics.
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